Cross-Border Carbon Regulation and Forests in Russia: From Expectations and Myth to Realization of Interests
https://doi.org/10.18288/1994-5124-2022-5-54-77
Abstract
Introduction of the EU Carbon Border Adjustment Mechanism over the period from 2023 to 2026 together with corporate commitments to achieve carbon neutrality and carry out commercial decarbonization have markedly increased interest in assessing the potential of carbon sequestration by Russian forests as a possible way to achieve decarbonization and facilitate Russian exports. The prevailing opinion in business circles is that a significant net positive carbon balance from Russia’s forests could circumvent the need for businesses to make costly reductions in their direct CO2 emissions. However, international decarbonization strategies and standards do not concur with that idea. Direct emissions will have to be reduced. Offset mechanisms, whose benefits are calculated as the difference between a baseline and an improved scenario for forest management (the principle of additionality), will compensate for only a part of the emissions. The experience of Canada is indicative, as it consistently implements measures to decarbonize industry without regard to the absorption of CO2 by its forests. Even though Canada has climatic conditions, forest growth, and population density similar to Russia’s, its policy is not dependent upon revising estimates of net CO2 absorption by forests upward. Forestry priorities in Russia, including reforestation, should instead be gradually shifted from managing commercial forests for harvesting timber to reducing all forest fires. Leased and non-leased forests should both be included, and reforestation that favors deciduous species and mixed forests should be given a higher priority. It is also necessary to remove barriers to forestry in agricultural forests and to plan for implementation of projects directed at improving both forestry and climate on the land leased out from the holdings of the State Forest Fund as well as on agricultural tracts, including those now overgrown by forests.
About the Authors
E. A. ShvartsRussian Federation
Evgeny A. Shvarts, Dr. Sci. (Geogr.), Head of the Center for Responsible Use of Natural Resources, Institute of Geography, Professor at the Faculty of Geography and Geoinformatics
29, str. 4, Staromonetnуy per., Moscow, 119017
11, Pokrovskiy bul., Moscow, 109028
A. O. Kokorin
Russian Federation
Alexey O. Kokorin, Cand. Sci. (Phys. and Math.), Director of the Climate and Energy Program
19, str. 3, Nikoloyamskaya ul., Moscow, 109240
A. V. Ptichnikov
Russian Federation
Andrey V. Ptichnikov, Cand. Sci. (Geog.), Deputy Head of the Center for Responsible Use of Natural Resources, Institute of Geography, Associate Professor at the Faculty of Geography and Geoinformatics
29, str. 4, Staromonetnуy per., Moscow, 119017
11, Pokrovskiy bul., Moscow, 109028
A. N. Krenke
Russian Federation
Alexander N. Krenke, Cand. Sci. (Geogr.), Senior Researcher of Laboratory of Biogeography, Institute of Geography
29, str. 4, Staromonetnуy per., Moscow, 119017
References
1. Gershinkova D. Nereshennye voprosy stat’i 6 Parizhskogo soglasheniya — vozmozhen li kompromiss v Glazgo? [Unresolved Issues in Article 6 of the Paris Agreement—Is a Compromise Possible in Glasgow?] Vestnik mezhdunarodnykh organizatsiy [International Organisations Research Journal], 2021, vol. 16, no. 3, pp. 69-84. DOI:10.17323/1996-7845-2021-03-03. (In Russ.)
2. Grushevenko E., Kapitonov S., Melnikov Yu., Perdero A., Sheveleva N., Siginevich D. Dekarbonizatsiya neftegazovoy otrasli: mezhdunarodnyy opyt i prioritety Rossii [Decarbonization of the Oil and Gas Industry: International Experience and Russia’s Priorities], Mitrova T., Gayda I. (eds.). Moscow, Skolkovo, 2021. (In Russ.)
3. Zamolodchikov D. G., Grabovskiy V. I., Kurts V. A. Vliyanie ob’’emov lesopol’zovaniya na uglerodnyy balans lesov Rossii: prognoznyy analiz po modeli CBM-CFS3 [Influence of Forest Harvest Rates on the Carbon Balance of Russian Forests: Projection Using the CBM-CFS3 Model]. Trudy Sankt-Peterburgskogo NII lesnogo khozyaystva [Proceedings of the St. Petersburg Scientific Research Institute of Forestry], 2014, no. 1, pp. 5-18. (In Russ.)
4. Zamolodchikov D. G., Grabovskiy V. I., Shulyak P. P. Inventarizatsiya byudzheta ugleroda v lesnom khozyaystve Rossii [Inventory of the Carbon Budget of the Forestry Sector of Russia]. Trudy Sankt-Peterburgskogo NII lesnogo khozyaystva [Proceedings of the St. Petersburg Scientific Research Institute of Forestry], 2013, no. 3, pp. 22-32. (In Russ.)
5. Prognoz razvitiya lesnogo sektora Rossiyskoy Federatsii do 2030 goda [Forecast of the Development of the Forest Sector of the Russian Federation through 2030]. Rome, Food and Agriculture Organization of the United Nations, 2012. http://nizrp.narod.ru/metod/kaftzkm//8.pdf. (In Russ.)
6. Ptichnikov A. V., Shvarts E. A., Kuznetsova D. A. O potentsiale pogloshcheniya parnikovykh gazov lesami Rossii dlya snizheniya uglerodnogo sleda eksporta otechestvennoy produktsii [The Greenhouse Gas Absorption Potential of Russian Forests and Possibilities for Carbon Footprint Reduction for Exported Domestic Products]. Doklady RAN. Nauki o Zemle [RAN Report: Earth Sciences], 2021, vol. 499, no. 2, pp. 95-98. (In Russ.)
7. Puzachenko Yu. G., Kotlov I. P., Sandlerskiy R. B. Analiz izmeneniy landshaftnogo pokrova po dannym mul’tispektral’noy distantsionnoy informatsii v Tsentral’no-Lesnom zapovednike [Analysis of Changes in Land Cover Using Multispectral Remote Sensing Information in the Central Forest Reserve]. Izvestiya RAN. Seriya geograficheskaya [Bulletin of the Russian Academy of Sciences: Geography], 2014, no. 3, pp. 5-18. DOI: 10.15356/0373-2444-2014-3-5-18. (In Russ.)
8. Filipchuk A. N., Malysheva N. V., Zolina T. A., Yugov A. N. Boreal’nye lesa Rossii: vozmozhnosti dlya smyagcheniya izmeneniya klimata [Russian Boreal Forests: Opportunities for Climate Change Mitigation]. Lesokhozyaystvennaya informatsiya [Forestry Information], 2020, no. 1, pp. 92-113. DOI:10.24419/LHI.2304-3083.2020.1.10. (In Russ.)
9. Filipchuk A. N., Malysheva N. V., Moiseev B. N., Strakhov V. V. Analiticheskiy obzor metodik ucheta vybrosov i pogloshcheniya lesami parnikovykh gazov atmosfery [Analytical Overview of Methodologies for Calculating Atmospheric Emission and Absorption of Greenhouse Gases by Forests ]. Lesokhozyaystvennaya informatsiya [Forestry Information], 2016, no. 3, pp. 36-85. (In Russ.)
10. Shvidenko A. Z., Schepaschenko D. G. Uglerodnyy byudzhet lesov Rossii [Carbon Budget of Russian Forests]. Sibirskiy lesnoy zhurnal [Siberian Forestry Journal], 2014, no. 1, pp. 69-92. (In Russ.)
11. Blaufelder С., Levy C., Mannion P., Pinner D. A Blueprint for Scaling Voluntary Carbon Markets to Meet the Climate Challenge. 2021. https://www.mckinsey.com/business-functions/sustainability/our-insights/a-blueprint-for-scaling-voluntary-carbon-markets-to-meet-the-climate-challenge#.
12. Ciais P., Canadell J., Luyssaert S., Chevallier F., Shvidenko A., Poussi Z., Jonas V., Peylin P., Wayne King A., Schulze E.-D., Piao S., Rodenbeck C., Peters W., Bréon F.-M. Can We Reconcile Atmospheric Estimates of the Northern Terrestrial Carbon Sink with Land-Based Accounting? Current Opinion in Environmental Sustainability, 2010, vol. 2, no. 4, pp. 225-230. DOI: 10.1016/j.cosust.2010.06.008.
13. Dolman A. J., Shvidenko A., Schepaschenko D., Ciais D., Tchebakova N., Chen T., Van der Molen M. K., Belelli Marchesini L., Maximov T., Maksyutov S., Schulze E. D. An Estimate of the Terrestrial Carbon Budget of Russia Using Inventory-Based, Eddy Covariance and Inversion Methods. Biogeosciences, 2012, vol. 9, no. 12, pp. 5323-5340. DOI: 10.5194/bg-9-5323-2012.
14. Donofrio S., Maguire P., Zwick S., Merry W. Voluntary Carbon and the Post-Pandemic Recovery: State of Voluntary Carbon Markets Report, Special Climate Week NYC, 2020. https://wecprotects.org/wp-content/uploads/2020/11/EM-Voluntary-Carbon-and-Post-Pandemic-Recovery-2020.pdf.
15. Harris N. L., Gibbs D. A., Baccini A., Birdsey R. A., De Bruin S., Farina M., Fatoyinbo L., Hansen M. C., Herold M., Houghton R. A., Potapov P. V., Suarez D. R., Roman-Cuesta R. M., Saatchi S. S., Slay C. M., Turubanova S. A., Tyukavina A. Global Maps of Twenty-First Century Forest Carbon Fluxes. Nature Climate Change, 2021, no. 11, pp. 234-240. DOI: 10.1038/s41558-020-00976-6.
16. Kurz W., Apps M. A 70-Year Retrospective Analysis of Carbon Fluxes in the Canadian Forest Sector. Ecological Applications, 1999, vol. 9, no. 2, pp. 526-547. DOI:10.2307/2641142.
17. Kurz W. A., Dymond C. C., White T. M., Stinson G., Shaw C. H., Rampley G. J., Smyth C. E., Simpson B. N., Neilson E. T., Trofymow J. A., Metsaranta J. M., Apps M. J. CBM-CFS3: A Model of Carbon-Dynamics in Forestry and Land-Use Change Implementing IPCC Standards. Ecological Modelling, 2009, vol. 220, no. 4, pp. 480-504. DOI: 10.1016/j.ecolmodel.2008.10.018.
18. Makarov I., Chen H., Paltsev S. Impacts of Climate Change Policies Worldwide on the Russian Economy. Climate Policy, 2020, vol. 20, no. 10, pp. 1242-1256. DOI:10.1080/14693062. 2020.1781047.
19. Pan Y., Birdsey R., Fang J., Houghton R., Kauppi P., Kurz W., Phillips O., Shvidenko A., Lewis S., Canadell J., Ciais P., Jackson R., Pacala S., Mcguire A. D., Piao S., Rautiainen A., Sitch S., Hayes D. A. Large and Persistent Carbon Sink in the World’s Forests. Science, 2011, vol. 333, no. 6045, pp. 988-993. DOI: 10.1126/science.1201609.
20. Schepaschenko D., Chave J., Phillips O. L. The Forest Observation System, Building a Global Reference Dataset for Remote Sensing of Forest Biomass. Scientific Data, 2019, vol. 6, no. 198. DOI:10.1038/s41597-019-0196-1.
21. Schepaschenko D., Moltchanova E., Fedorov S., Karminov V., Ontikov P., Santoro M., See L., Kositsyn V., Shvidenko A., Romanovskaya A., Korotkov V., Lesiv M., Bartalev S., Fritz S., Shchepashchenko M., Kraxner F. Russian Forest Sequesters Substantially More Carbon than Previously Reported. Scientific Reports, 2021, vol. 11. DOI: 10.1038/s41598-021-92152-9.
22. Schepaschenko D., Shvidenko A., Lesiv M., Ontikov P., Shchepashchenko M., Kraxner F. Estimation of Forest Area and Its Dynamics in Russia Based on Synthesis of Remote Sensing Products. Contemporary Problems of Ecology, 2015, vol. 8, pp. 811-817. DOI: 10.1134/S1995425515070136.
23. Smyth C. E., Stinson G., Neilson E., Lemprière T. C., Hafer M., Rampley G. J., Kurz W. A. Quantifying the Biophysical Climate Change Mitigation Potential of Canada’s Forest Sector. Biogeosciences, 2014, vol. 11, no. 13, pp. 3515-3529. DOI: 10.5194/bg-11-3515-2014.
Review
For citations:
Shvarts E.A., Kokorin A.O., Ptichnikov A.V., Krenke A.N. Cross-Border Carbon Regulation and Forests in Russia: From Expectations and Myth to Realization of Interests. Economic Policy. 2022;17(5):54-77. (In Russ.) https://doi.org/10.18288/1994-5124-2022-5-54-77