Inflation Forecasting in Time Series Models Using High Frequency Data
https://doi.org/10.18288/1994-5124-2025-2-34-55
Abstract
The article examines ways to improve inflation forecasting by using high frequency consumer price data in time series models. The purpose of increasing the number of observations available at a higher frequency is to increase the accuracy of inflation forecasts. The theoretical part of the paper considers the advantages and disadvantages of using high frequency price data in ADL, VAR and MIDAS inflation models with both single and mixed data frequency. The empirical section traces out the effects of including an online price index available at a daily or weekly frequency during the period from 2020 to 2023 in the forecast model for the consumer price index. The article compares the forecasts of consumer prices by applying the VAR, MFVAR and MIDAS models which include data from a high frequency regressor with the forecasts obtained through auto-ARIMA models. The conclusion about the difference in the quality of the short-term forecast of consumer price dynamics in these models is based on the difference of the forecast error indicator of the models. The results provide some evidence that short-term out-of-sample CPI dynamic forecasting becomes more accurate when online price data is included (namely in the class of multidimensional time series models when data is included in the model at a higher frequency). However, the advantage derived from including high frequency online price data in models decreases as the forecast horizon is extended. The results show the importance of including online price data in inflation models in a disaggregated form while forecasting price trends of the nearest future.
About the Authors
A. M. GrebenkinaRussian Federation
Alina M. Grebenkina, Cand. Sci. (Econ.), Researcher
84, Vernadskogo pr., Moscow, 119571
E. V. Sinelnikova-Muryleva
Russian Federation
Elena V. Sinelnikova-Muryleva, Cand. Sci. (Econ.), Lead Researcher
84, Vernadskogo pr., Moscow, 119571
References
1. Bozhechkova A. V., Evseev A. S. Analiz zhestkosti tsen v roznichnoy onlayn-torgovle Moskvy [Price Rigidity Analysis: Evidence From the E-Commerce Market]. Ekonomicheskaya Politika [Economic Policy], 2020, no. 15(5), pp. 32-59. DOI: 10.18288/1994-5124-2020-5-32-59. (In Russ.)
2. Dyachkova N. F. Podkhody k postroeniyu vysokochastotnykh tsenovykh indeksov s ispol’zovaniem onlayn-dannykh [Approaches to Constructing High Frequency Price Indices Using Online Data]. In: Rossiyskiy ekonomicheskiy kongress “REK-2023”. Vol. III: Tematicheskaya konferentsiya “Makroekonomika i ekonomicheskiy rost”: sbornik tezisov dokladov [Macroeconomics and Economic Growth Thematic Session at the Fifth Russian Economic Congress (REC-2023), Collection of Abstracts], Yekaterinburg, September 11-15. Moscow, New Economic Association, 2023, pp. 27-30. https://www.econorus.org/pdf/Volume03_REC-2023.pdf. (In Russ.)
3. Evseev A.S., Latypov R.R., Postolit E.A., Sinelnikova-Muryleva E.V. Tekhnicheskie i metodologicheskie problemy sbora dannykh o tsenakh onlayn-rеteylerov [Technical and Methodological Challenges in Collecting Price Data From Online Retailers]. Ekonomicheskoe razvitie Rossii [Russian Economic Development], 2022, vol. 29, no. 11, pp. 36-45. (In Russ.)
4. Isakov A., Latypov R., Repin A., Postolit E., Evseev A., Sinelnikova-Muryleva E. Tverdye tsifry: otkrytye mikrodannye o potrebitel’skikh tsenakh [Hard Numbers: Open Consumer Price Database]. Den’gi i kredit [Russian Journal of Money and Finance], 2021, no. 80(1), pp. 104-119. DOI: 10.31477/rjmf.202101.104. (In Russ.)
5. Perevyshin Yu. N. Kratkosrochnoe prognozirovanie inflyatsii v rossiyskoy ekonomike [Short-Term Inflation Forecasting in the Russian Economy]. Ekonomicheskaya Politika [Economic Policy], 2022, no. 5, pp. 8-25. (In Russ.)
6. Alper C., Fendoglu S., Saltoglu B. MIDAS Volatility Forecast Performance Under Market Stress: Evidence From Emerging Stock Markets. Economics Letters, 2012, no. 117(2), pp. 528-532. DOI:10.1016/j.econlet.2012.05.037.
7. Aparicio D., Bertolotto M. Forecasting Inflation With Online Prices. International Journal of Forecasting, 2020, no. 36(2), pp. 232-247. DOI:10.1016/j.ijforecast.2019.04.018.
8. Banbura M., Giannone D., Reichlin L. Nowcasting. ECB, Working Paper no. 1275, 2010.
9. Breitung J., Roling C. Forecasting Inflation Rates Using Daily Data: A Nonparametric MIDAS Approach. Journal of Forecasting, 2015, no. 34, pp. 588-603. DOI:10.1002/for.2361.
10. Cavallo A. Are Online and Offline Prices Similar? Evidence From Large Multi-Channel Retailers. American Economic Review, 2017, no. 107(1), pp. 283-303. DOI: 10.1257/aer.20160542.
11. Cavallo A., Rigobon R. The Billion Price Project: Using Online Prices for Measurement and Research. Journal of Economic Perspectives, 2016, no. 30(2), pp. 151-178. DOI: 10.1257/jep.30.2.151.
12. Gabrielyan D. Forecasting Inflation Using the Phillips Curve in Inflation Targeting Countries. International Review of Applied Economics, 2019, no. 33(5), pp. 601-623. DOI:10.1080/02692171.2018.1516740.
13. Ghysels E. Macroeconomics and the Reality of Mixed Frequency Data. Journal of Econometrics, 2016, no. 193, pp. 294-314. DOI: 10.1016/j.jeconom.2016.04.008
14. Ghysels E., Kvedaras V., Zemlys V. Mixed Frequency Data Sampling Regression Models: The R Package midasr. Journal of Statistical Software, 2016, no. 72(4), pp. 1-35. DOI: 10.18637/jss.v072.i04.
15. Ghysels E., Sinko A., Valkanov R. MIDAS Regressions: Further Results and New Directions. Econometric Reviews, 2007, no. 26(1), pp. 53-90. DOI: 10.1080/07474930600972467.
16. Kuzin V., Marcellino M., Schumacher C. MIDAS vs. Mixed-Frequency VAR: Nowcasting GDP in the Euro Area. International Journal of Forecasting, 2011, no. 27(2), pp. 529-542. DOI: 10.1016/j.ijforecast.2010.02.006.
17. Kvedaras V., Zemlys V. Testing the Functional Constraints on Parameters in Regressions With Variables of Different Frequency. Economics Letters, 2012, no. 116(2), pp. 250-254. DOI:10.1016/j.econlet.2012.03.009.
18. Monteforte L., Moretti G. Real-Time Forecasts of Inflation: The Role of Financial Variables. Journal of Forecasting, 2013, no. 32, pp. 51-61.
19. Öğünç F., Akdoğan K., Başer S., Chadwick M., Ertuğ D., Hülagü T., Kösem S., Özmen M., Tekatlı N. Short-Term Inflation Forecasting Models for Turkey and Forecast Combination Analysis. Economic Modelling, 2013, no. 33, pp. 312-325.
20. Schorfheide F., Song D. Real-Time Forecasting With a Mixed-Frequency VAR. NBER, Working Paper no. w19712, 2013. DOI: 10.3386/w19712.
Review
For citations:
Grebenkina A.M., Sinelnikova-Muryleva E.V. Inflation Forecasting in Time Series Models Using High Frequency Data. Economic Policy. 2025;20(2):34-55. (In Russ.) https://doi.org/10.18288/1994-5124-2025-2-34-55