Preview

Economic Policy

Advanced search

Cryptocurrency Volatility Forecasting Using Google Trends and GDELT

https://doi.org/10.18288/1994-5124-2025-4-82-117

Abstract

Bitcoin, Ether, Litecoin and XRP are among the largest cryptocurrencies and together have a market capitalization that constitutes a substantial portion of the digital asset market. At the same time, the cryptocurrency market differs from that of traditional financial assets because it has greater price volatility, which makes constructing more accurate forecasts of daily volatility for these assets especially useful. A more accurate estimate of the daily volatility of a financial asset is an important aspect of trading strategies and arriving at a risk management stance. Volatility forecasts are also a factor in the regulatory policy that financial authorities pursue for the digital asset market. The study collects supplementary non-financial information from the internet and feeds it into an HAR-RV model to improve the accuracy of realized volatility forecasts for the four largest cryptocurrencies. Variables are then derived from GDELT and Google Trends data sources as exogenous indicators of public interest and sentiment. These variables are incorporated into a standard HAR-log-RV model, and various versions of the model for each asset are applied to a moving window from 1 January 2018 to 23 June 2024 to yield more than 2,000 out-of-sample one-day-ahead forecasts on which loss functions are calculated. The set of out-of-sample model errors for each asset is tested using the MCS procedure to select the set of statistically superior forecast models. The data sources proposed in the study and the variables constructed from them significantly improve realized volatility forecasts for the four largest cryptocurrencies.

About the Author

M. A. Teterin
National Research University Higher School of Economics
Russian Federation

Maxim A. Teterin – Postgraduate Student, Applied Economics Department

11, Pokrovskiy bul., Moscow, 109028



References

1. Aganin A. D., Manevich V. A., Peresetsky A. A., Pogorelova P. V. Sravnenie modeley prognoza volatil’nosti kriptovalyut i fondovogo rynka [Comparison of Cryptocurrency and Stock Market Volatility Forecast Models]. Ekonomicheskiy zhurnal VShE [HSE Economic Journal], 2023, no. 27(1), pp. 49-77. DOI: 10.17323/1813-8691-2023-27-1-49-77. (In Russ.)

2. Manevich V. A., Peresetsky A. A., Pogorelova P. V. Volatil’nost’ fondovogo rynka i volatil’nost’ kriptovalyut [Stock Market and Cryptocurrency Market Volatility]. Prikladnaya ekonometrika [Applied Econometrics], 2022, no. 65, pp. 65-76. DOI: 10.22394/19937601-2022-65-65-76. (In Russ.)

3. Aalborg H. A., Molnár P., de Vries J. E. What Can Explain the Price, Volatility and Trading Volume of Bitcoin? Finance Research Letters, 2019, no. 29, pp. 255-265. DOI: 10.1016/j. frl.2018.08.010.

4. Al Guindy M. Cryptocurrency Price Volatility and Investor Attention. International Review of Economics & Finance, 2021 no. 76, pp. 556-570. DOI: 10.1016/j.iref.2021.06.007.

5. Alipour P., Charandabi S. E. Analyzing the Interaction Between Tweet Sentiments and Price Volatility of Cryptocurrencies. European Journal of Business and Management Research, 2023, no. 8(2), pp. 211-215. DOI: 10.24018/ejbmr.2023.8.2.1865.

6. Anamika A., Subramaniam S. Do News Headlines Matter in the Cryptocurrency Market? Applied Economics, 2022, no. 54, pp. 6322-6338. DOI: 10.1080/00036846.2022.2061904.

7. Andersen T. G., Bollerslev T. Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts. International Economic Review, 1998, no. 39(4), pp. 885-905. DOI: 10.2307/2527343.

8. Andersen T. G., Bollerslev T., Christoffersen P. F., Diebold F. X. Volatility and Correlation Forecasting. Handbook of Economic Forecasting, 2006, no. 1, pp. 777-878. DOI: 10.1016/ S1574-0706(05)01015-3.

9. Arratia A., López-Barrantes A. X. Do Google Trends Forecast Bitcoins? Stylized Facts and Statistical Evidence. Journal of Banking and Financial Technology, 2021, no. 5(1), pp. 45-57. DOI: 10.1007/s42786-021-00027-4.

10. Aslanidis N., Bariviera A. F., López Ó. G. The Link Between Cryptocurrencies and Google Trends Attention. Finance Research Letters, 2022, no. 47, article 102654. DOI: 10.1016/j. frl.2021.102654.

11. Barndorff-Nielsen O. E., Shephard N. Econometric Analysis of Realized Covariation: High Frequency Based Covariance, Regression, and Correlation in Financial Economics. Econometrica, 2004, no. 72(3), pp. 885-925. DOI: 10.1111/j.1468-0262.2004.00515.x.

12. Bergsli L. Ø., Lind A. F., Molnár P., Polasik M. Forecasting Volatility of Bitcoin. Research in International Business and Finance, 2022, no. 59, article 101540. DOI: 10.1016/j.ribaf.2021.101540.

13. Bouri E., Gkillas K., Gupta R., Pierdzioch C. Forecasting Realized Volatility of Bitcoin: The Role of the Trade War. Computational Economics, 2021, no. 57, pp. 29-53. DOI: 10.1007/ s10614-020-10022-4.

14. Brauneis A., Sahiner M. Crypto Volatility Forecasting: Mounting a HAR, Sentiment, and Machine Learning Horserace. Asia-Pacific Financial Markets, 13 December 2024, pp. 1-33. DOI: 10.1016/j.econlet.2018.02.001.

15. Chen R. Forecasting Ethereum’s Volatility: An Expansive Approach Using HAR Models and Structural Breaks. Cogent Economics & Finance, 2024, no. 12(1), article 2300925. DOI: 10.1080/23322039.2023.2300925.

16. Chiriac R., Voev V. Modelling and Forecasting Multivariate Realized Volatility. Journal of Applied Econometrics, 2011 no. 26(6), pp. 922-947. DOI: 10.1002/jae.1152.

17. Clements A., Preve D. P. A Practical Guide to Harnessing the HAR Volatility Model. Journal of Banking & Finance, 2021, no. 133, article 106285. DOI: 10.1016/j.jbankfin.2021.106285.

18. Corsi F. A Simple Approximate Long-Memory Model of Realized Volatility. Journal of Financial Econometrics, 2009, no. 7(2), pp. 174-196. DOI: 10.1093/jjfinec/nbp001.

19. Dudek G., Fiszeder P., Kubus P., Orzeszko W. Forecasting Cryptocurrencies Volatility Using Statistical and Machine Learning Methods: A Comparative Study. Applied Soft Computing, 2024, no. 151(2), article 111132. DOI: 10.1016/j.asoc.2023.111132.

20. Dyhrberg A. H. Bitcoin, Gold and the Dollar A GARCH Volatility Analysis. Finance Research Letters, 2016, no. 16, pp. 85-92. DOI: 10.1016/j.frl.2015.10.008.

21. Engle R.F. Autoregressive Conditional Heteroscedasticity With Estimates of the Variance of United Kingdom Inflation. Econometrica, 1982, no. 54(4), pp. 987-1007. DOI: 10.2307/1912773.

22. Engle R. F., Bollerslev T. Modelling the Persistence of Conditional Variances. Econometric Reviews, 1986, no. 5(1), pp. 1-50. DOI: 10.1080/07474938608800095.

23. Gyamerah S. A. Modelling the Volatility of Bitcoin Returns Using GARCH Models. Quantitative Finance and Economics, 2019, no. 3(4), pp. 739-753. DOI: 10.3934/QFE.2019.4.739.

24. Hansen P. R., Lunde A., Nason J. M. The Model Confidence Set. Econometrica, 2011, no. 79(2), article 453497. DOI: 10.3982/ECTA5771.

25. Harb E., Bassil C., Kassamany T., Baz R. Volatility Interdependence Between Cryptocurrencies, Equity, and Bond Markets. Computational Economics, 2024, no. 63(3), pp. 951-981. DOI: 10.1007/s10614-022-10318-7.

26. Kyriazis N., Papadamou S., Tzeremes P., Corbet S. The Differential Influence of Social Media Sentiment on Cryptocurrency Returns and Volatility During COVID-19. The Quarterly Review of Economics and Finance, 2023, no. 89, pp. 307-317. DOI: 10.1016/j.qref.2022.09.004.

27. Liang C., Zhang Y., Li X., Ma F. Which Predictor Is More Predictive for Bitcoin Volatility? And Why? International Journal of Finance & Economics, 2022, no. 27(2), pp. 1947-1961. DOI: 10.1002/ijfe.2252.

28. Liu L. Y., Patton A. J., Sheppard K. Does Anything Beat 5-Minute RV? A Comparison of Realized Measures Across Multiple Asset Classes. Journal of Econometrics, 2015, no. 187(1), pp. 293-311. DOI: 10.1016/j.jeconom.2015.02.008.

29. Ma F., Wei Y., Huang D., Chen Y. Which Is the Better Forecasting Model? A Comparison Between HAR-RV and Multifractality Volatility. Physica A: Statistical Mechanics and Its Applications, 2014, no. 405, pp. 171-180. DOI: 10.1016/j.physa.2014.03.007.

30. Manevich V., Ignatov D. Machine Learning, Neural Networks And Econometric Models for Prediction the Realized Volatility of Bitcoin and E-Mini S&P500. SSRN, Working Paper 4334006, 2023. DOI: 10.2139/ssrn.4334006.

31. Mastro D. Forecasting Realized Volatility: ARCH-Type Models vs. the HAR-RV Model. SSRN, Working Paper 2519107, 2014. DOI: 10.2139/ssrn.2519107.

32. Nelson D. B. Asymptotic Filtering Theory for Multivariate ARCH Models. Journal of Econometrics, 1996, no. 71(1-2), pp. 1-47. DOI: 10.1016/0304-4076(94)01679-8.

33. Rabemananjara R., Zakoian J. M. Threshold ARCH Models and Asymmetries in Volatility. Journal of Applied Econometrics, 1993, no. 8(1), pp. 31-49. DOI: 10.1002/jae.3950080104.

34. Sapkota N. News-Based Sentiment and Bitcoin Volatility. International Review of Financial Analysis, 2022, no. 82, article 102183. DOI: 10.1016/j.irfa.2022.102183.

35. Teterin M., Peresetsky A. Google Trends and Bitcoin Volatility Forecast. Journal of the New Economic Association, 2024, no. 4(65), pp. 118-135. DOI: 10.31737/22212264_2024_4_118-135.

36. Teterin M., Peresetsky A. Can Ethereum Predict Bitcoin’s Volatility? Applied Econometrics, 2025, no. 77, pp. 74-90. DOI: 10.22394/1993-7601-2025-77-74-90.

37. Ullah S., Attah-Boakye R., Adams K., Zaefarian G. Assessing the Influence of Celebrity and Government Endorsements on Bitcoin’s Price Volatility. Journal of Business Research, 2022, no. 145, pp. 228-239. DOI: 10.1016/j.jbusres.2022.01.055.

38. Wang Y., Andreeva G., Martin-Barragan B. Machine Learning Approaches to Forecasting Cryptocurrency Volatility: Considering Internal and External Determinants. International Review of Financial Analysis, 2023, no. 90, article 102914. DOI: 10.1016/j.irfa.2023.102914.


Review

For citations:


Teterin M.A. Cryptocurrency Volatility Forecasting Using Google Trends and GDELT. Economic Policy. 2025;20(4):82-117. (In Russ.) https://doi.org/10.18288/1994-5124-2025-4-82-117

Views: 34


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1994-5124 (Print)
ISSN 2411-2658 (Online)