Preview

Economic Policy

Advanced search

Potential Role of Bioenergy in Decarbonizing Russia’s Economy

https://doi.org/10.18288/1994-5124-2022-6-90-111

Abstract

Russia is one of the world’s chief emitters of greenhouse gases even though it has vast potential to use zero-carbon energy resources, particularly biofuels. In order to prevent global warming above 1.5–2°C, Russia announced its commitment under the UN Paris Agreement to reach carbon neutrality by 2060. Analysis of the low-carbon development scenarios based on the RU-TIMES model developed for Russia indicates that cost-effective pathways toward deep decarbonization of the national economy are not feasible without extensive use of biofuels. By 2050 bioenergy together with improved energy efficiency, solar and wind power, and carbon capture and storage technologies could result in CO2 emissions from domestic energy production that are 80–90% less than in 2010. Russia’s rich store of natural resources and innovative technologies offer opportunities to increase domestic production of bioenergy by 2050 to levels comparable with the output from all of its nuclear and hydropower plants. Russia’s competitive advantages could make it a world leader in modern bioenergy markets, especially during the transition to green energy, decarbonization of the global economy, and international carbon pricing. However, developing bioenergy is not a priority for either the Russian Energy Strategy Through 2035 or the Low-Carbon Development Strategy Through 2050. This study provides more accurate estimates of the potential for bioenergy to fulfill Russia’s Paris Agreement commitments and thoroughly decarbonize its economy.

About the Authors

G. V. Safonov
European Forest Institute
Finland

Georgy V. Safonov, Cand. Sci. (Econ.), Principal Scientist

Yliopistokatu 6B, 80100 Joensuu



M. L. Kozeltsev
Center for Environmental and Natural Resource Economics, National Research University Higher School of Economics
Russian Federation

Mikhail L. Kozeltsev, Cand. Sci. (Econ.), Director

20, Myasnitskaya, Moscow, 101000



V. Yu. Potashnikov
Russian Presidential Academy of National Economy and Public Administration
Russian Federation

Vladimir Yu. Potashnikov, Senior Researcher

82–84, Vernadskogo pr., Moscow, 119571



A. L. Dorina
National Research University Higher School of Economics
Russian Federation

Alexandra L. Dorina, Research Fellow

20, Myasnitskaya, Moscow, 101000



A. A. Semakina
National Research University Higher School of Economics
Russian Federation

Anastasiya A. Semakina, Postgraduate Student, Department of Global Economy and Global Politics

20, Myasnitskaya, Moscow, 101000



References

1. Bashmakov I. A. Strategiya nizkouglerodnogo razvitiya rossiyskoy ekonomiki [Low-Carbon Development Strategy for the Russian Economy]. Voprosy ekonomiki, 2020, no. 7, pp. 51-74. (In Russ.)

2. Bezrukikh P. P., Degtyarev V. V., Elistratov V. V., Pantskhava D. S., Petrov E. S., Puzakov V. N., Sidorenko G. I., Tarnizhevskiy B. V., Shpak A. A., Yampolskiy A. A. Spravochnik po resursam vozobnovlyaemykh istochnikov energii Rossii i mestnykh vidov topliva (pokazateli po territoriyam) [Reference Book on Renewable Energy Sources and Local Fuels (Indicators by Territories)], Bezrukih P. P. (ed.). Moscow, IATs “Energiya”, 2007. (In Russ.)

3. Vasilov R. Biotekhnologiya v Rossii: nedavnee proshloe, opyt nastoyashchego, perspektivy budushchego [Biotechnologies in Russia: Recent Past, Current Experience, Future Prospects]. Moscow, 2021. https://biorosinfo.ru/Situacionnyj-analiz-razvitiya-biotekhnologii-v-Rossijskoj-Federacii/. (In Russ.)

4. Zamolodchikov D., Kraev G. Vliyanie izmeneniy klimata na lesa Rossii: zafiksirovannye vozdeystviya i prognoznye otsenki [Climate Change Effects on Russian Forests: Observed Impacts and Projections]. Ustoychivoe lesopol’zovanie [Sustainable Forest Use], 2016, no. 4(48), pp. 23-31. (In Russ.)

5. Lugovoy O., Potashnikov V., Gordeev D. Prognozy energobalansa i vybrosov parnikovykh gazov na modeli RU-TIMES do 2050 goda [Projections of Energy Balance and Greenhouse Gas Emissions Using the RU-TIMES Model Through 2050]. Nauchnyy vestnik IEP im. Gaidara [Scientific Bulletin of Gaidar’s EIP], 2014, no. 5, pp. 39-43. (In Russ.)

6. Lugovoy O., Laitner D., Potashnikov V. Nizkouglerodnoe razvitie kak drayver ekonomicheskogo rosta [Low Carbon Development as a Driver of Economic Growth]. Rossiyskoe predprinimatel'stvo [Russian Entrepreneurship], 2015, no. 16(23), pp. 4221-4228. (In Russ.)

7. Perederiy S. Zhidkoe biotoplivo iz syr’ya rastitel’nogo proiskhozhdeniya [Liquid Biofuel from Biomass Materials]. LesPromInform, 2013, no. 6(96), pp. 152-156. (In Russ.)

8. Gokhberg L., Kirpichnikova M. (eds.). Prognoz nauchno-tekhnologicheskogo razvitiya Rossii: 2030. Biotekhnologii [Forecast for the Scientific and Technological Development of Russia: 2030. Biotechnologies]. Moscow, Ministry of Education and Science of the Russian Federation, HSE University, 2014. (In Russ.)

9. Sokolov A. Forsayt: vzglyad v budushchee [Foresight: A Look into the Future]. Forsayt [Foresight], 2007, no. 1(1), pp. 8-12. (In Russ.)

10. An J., Mikhaylov A., Lopatin E., Moiseev N., Richter U. H., Varyash I., Uyeh D., Oganov A., Bertelsen R.G. Bioenergy Potential of Russia: A Method for Evaluating Costs. International Journal of Energy Economics and Policy, 2019, vol. 9(5), pp. 244-251.

11. Boyarov A., Osmakova A., Popov V. Bioeconomy in Russia: Today and Tomorrow. New Biotechnology, 2021, vol. 60, pp. 36-43.

12. Den Elzen M., Admiraal A., Roelfsema M., Van Soest H., Hof A. F., Forsell N. Contribution of the G20 Economies to the Global Impact of the Paris Agreement Climate Proposals. Climatic Change, 2016, vol. 137, pp. 655-665.

13. Fragkos P., Van Soest H., Schaeffer R., Reedman L., Köberle A. C., Macaluso N., Evangelopoulou S., De Vita A., Sha F., Qimin Ch., Kejun J., Mathur R., Shekhar S., Dewi R. G., Diego S. H., Oshiro K., Fujimori Sh., Park Ch., Safonov G., Iyer G. Energy System Transitions and Low-Carbon Pathways in Australia, Brazil, Canada, China, EU-28, India, Indonesia, Japan, Republic of Korea, Russia and the United States. Energy, 2020, vol. 216, pp. 1-13.

14. Laitner J., Lugovoy O., Potashnikov V. Cost and Benefits of Deep Decarbonization in Russia. Ekonomicheskaya politika [Economic Policy], 2020, vol. 15, no. 2, pp. 86-105.

15. Loulou R., Goldstein G., Kanudia A., Lettile A., Remme U. Documentation for the TIMES Model. Paris, International Energy Agency, 2005.

16. Luderer G., Vrontisi Z., Bertram Cr., Edelenbosch O. Y., Pietzcker R. C., Rogelj J., De Boer H. S., Drouet L., Emmerling J., Fricko O., Fujimori S., Havlík P., Iyer G., Keramidas K., Kitous A., Pehl M., Krey V., Riahi K., Saveyn B., Tavoni M., Van Vuuren D. P., Kriegler E. Residual Fossil CO₂ Emissions in 1.5‐2°C Pathways. Nature Climate Change, 2018, vol. 8, pp. 626-633.

17. Makarov A., Mitrova T., Kulagin V. Long-Term Development of the Global Energy Sector Under the Influence of Energy Policies and Technological Progress. Russian Journal of Economics, 2020, vol. 6(4), pp. 347-357. 18. Makarov I., Chen H., Paltsev S. Impacts of Climate Change Policies Worldwide on the Russian Economy. Climate Policy, 2020, vol. 20(10), pp. 1242-1256.

18. Namsaraev Z., Gotovtsev P., Komova A., Vasilov R. Current Status and Potential of Bioenergy in the Russian Federation. Renewable and Sustainable Energy Reviews, 2018, vol. 81, part 1, pp. 625-634.

19. Pahle M., Schaeffer R., Pachauri Sh., Eom J., Awasthy A., Chen W., Di Maria C., Jiang K., He Ch., Portugal-Pereira J., Safonov G., Verdolini E. The Crucial Role of Complementarity, Transparency, and Adaptability for Designing Energy Policies for Sustainable Development. Energy Policy, 2021, vol. 159. https://doi.org/10.1016/j.enpol.2021.112662.

20. Rogelj J., Schaeffer M., Friedlingstein P., Gillett N. P., Van Vuuren D. P., Riahi K., Allen M., Knutti R. Differences Between Carbon Budget Estimates Unravelled. Nature Climate Change, 2016, vol. 6, pp. 245-252.

21. Safonov G., Potashnikov V., Lugovoy O., Safonov M., Dorina A., Bolotov A. The Low Carbon Development Options for Russia. Climatic Change, 2020, vol. 162, pp. 1929-1945.

22. Schaeffer R., Köberle A., Van Soest H. L., Bertram C., Luderer G., Riahi K., Krey V., Van Vuuren D. P., Kriegler E., Fujimori S., Chen W., He C., Vrontisi Z., Vishwanathan S., Garg A., Mathur R., Shekhar S., Oshiro K., Ueckerdt F., Safonov G., Iyer G., Gi K., Potashnikov V. Comparing Transformation Pathways Across Major Economies. Climatic Change, 2020, vol. 162, pp. 1787-1803.

23. Stern N. H. The Economics of Climate Change: The Stern Review. Cambridge, UK, Cambridge University Press, 2007.

24. Vasilyev O., Barikaeva N., Akhmadeev B., Moiseev N. Analysis of Wood Energy Russian Market. IOP Conference Series: Earth and Environmental Science, 2019, vol. 392. doi:10.1088/1755-1315/392/1/012077.

25. Waisman H., Bataille Ch., Winkler H., Jotzo F., Shukla P., Colombier M., Buira D., Criqui C., Fischedick M., Kainuma M., La Rovere E., Pye S., Safonov G., Siagian U., TengF., VirdisM.R., Williams J., Young S., Anandarajah G., Boer R., Cho Y., Denis-Ryan A., Dhar S., Gaeta M., Gesteira C., Haley B., Hourcade J. Ch., Liu Q., Lugovoy O., Masui T., Mathy S., Oshiro K., Parrado R., Pathak M., Potashnikov V., Samadi S., Sawyer D., Spencer T., Tovilla J., Trollip H. A Pathway Design Famework for National Low Greenhouse Gas Emission Development Strategies. Nature Climate Change, 2019, vol. 9, pp. 261-268.


Review

For citations:


Safonov G.V., Kozeltsev M.L., Potashnikov V.Yu., Dorina A.L., Semakina A.A. Potential Role of Bioenergy in Decarbonizing Russia’s Economy. Economic Policy. 2022;17(6):90-111. (In Russ.) https://doi.org/10.18288/1994-5124-2022-6-90-111

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1994-5124 (Print)
ISSN 2411-2658 (Online)