Determining the Effect of Budget Policy on the Dynamics of Russian Regional Development
https://doi.org/10.18288/1994-5124-2025-6-06-35
Abstract
Efficient use of state budget resources becomes an urgent matter when both government expenditures and budget constraints are growing. Budget efficiency at the regional level is particularly important in large federative states with high economic differentiation. The purpose of this study is to determine the effect of budget policy on the dynamics of business activity in the Russian Federation’s varied regions. This has been done by calculating government expenditure multipliers at the subnational level using impulse response functions derived from VAR models. The paper provides a business activity indicator based on sectoral indices in order to assess the quarterly dynamics of economic development in the regions. This approach indicates that regions with the highest budget multipliers have significantly less debt and slightly higher expenditures on projects. High multipliers are also typical in regions where budget expenditures, federal grants, and subsidies are large relative to the GRP. Less developed regions with high potential for investment and business growth also tend to have high multipliers. In addition, the authors calculate the sensitivity of regional business activity to federal budget expenditures. In general and within a certain margin of error, the outcomes of these analyses can be used to assess each region’s contribution to the efficiency of total government expenditures at the national level and can guide the way budget policy may be employed in stimulating national economic growth. However, these estimates are perhaps best suited to support policy decisions in difficult macroeconomic conditions because they have been derived from budget multipliers within a particular VAR model applied to a period (2011–2023) when the regions were adapting to new challenges in half the years included (forced implementation of the decrees of May 2012, the need for import substitution, COVID restrictions, and economic sanctions).
About the Authors
I. A. SokolovRussian Federation
Ilya A. Sokolov, Cand. Sci. (Econ.), Lead Researcher
49/2, Leningradskiy pr., Moscow, 125167
E. O. Matveev
Russian Federation
Evgenii O. Matveev, Junior Researcher
49/2, Leningradskiy pr., Moscow, 125167
J. E. Kazakova
Russian Federation
Julia E. Kazakova, Junior Researcher
49/2, Leningradskiy pr., Moscow, 125167
References
1. Belev S. G., Veterinarov V. V., Matveev E. O. Perekhod k elektronnym protseduram v gosudarstvennykh zakupkakh v usloviyakh favoritizma [Estimation of Electronic Procedures Effects in Public Procurement Under Favoritism]. Voprosy ekonomiki, 2023, no. 9, pp. 47-64. DOI: 10.32609/0042-8736-2023-9-47-64. (In Russ.)
2. Vlasov S. A., Deryugina E. B. Fiskal’nye mul’tiplikatory v Rossii [Fiscal Multipliers in Russia]. Zhurnal Novoy ekonomicheskoy assotsiatsii [Journal of the New Economic Association], 2018, no. 2(38), pp. 104-119. (In Russ.)
3. Vlasov S. A., Ponomarenko A. A. Rol’ byudzhetnoy politiki v usloviyakh finansovo-ekonomicheskogo krizisa [The Role of Budget Policy Under the Financial and Economic Crisis]. Zhurnal Novoy ekonomicheskoy assotsiatsii [Journal of the New Economic Association], 2010, no. 7, pp. 111-133. (In Russ.)
4. Deryugin A. N., Komarnitskaya A. N., Filippova I. N. Osobennosti antikrizisnoy finansovoy podderzhki regionov v Rossii [Features of Anti-Crisis Financial Support for Regions in Russia]. Ekonomicheskaya politika [Economic Policy], 2023, no. 18(5), pp. 6-41. DOI: 10.18288/1994-5124-2023-5-6-41. (In Russ.)
5. Zubarevich N. V., Safronov S. G. Nalogovo-byudzhetnaya differentsiatsiya regionov Rossii: masshtaby i dinamika [Regional Inequality and Its Changes: Budget Projection]. Regional’nye issledovaniya [Regional Studies], 2023, no. 1(79), pp. 31-41. DOI: 10.5922/1994-5280-2023-1-3. (In Russ.)
6. Zyablitskiy I. E. Otsenka fiskal’nykh mul’tiplikatorov v rossiyskoy ekonomike [Estimating Fiscal Multipliers in Russian Economy]. Ekonomicheskiy zhurnal VShE [HSE Economic Journal], 2020, no. 24(2), pp. 268-294. DOI: 10.17323/1813-8691-2020-24-2-268-294. (In Russ.)
7. Kudrin A., Knobel A. Byudzhetnaya politika kak istochnik ekonomicheskogo rosta [Fiscal Policy as a Source of Economic Growth]. Voprosy ekonomiki, 2017, no. 10, pp. 5-26. DOI: 10.32609/0042-8736-2017-10-5-26. (In Russ.)
8. Matveev E. O., Sokolov I. A. Primenenie VAR-modeley dlya otsenki vliyaniya byudzhetnykh raskhodov na dinamiku VVP [Application of VAR Models to Assess the Impact of Budget Expenditures on GDP Dynamics]. Problemy prognozirovaniya [Studies on Russian Economic Development], 2024, vol. 35, no. 5, pp. 657-666. DOI: 10.1134/S1075700724700199. (In Russ.)
9. Myasnikov A., Tarasov V., Averyanova A., Tkachenko M. Regional’nye finansy i byudzhetno-nalogovoe regulirovanie: otsenka byudzhetnogo mul’tiplikatora [Regional Finances and Fiscal Regulation: Estimating the Budget Multiplier]. Bank of Russia: Economic Research Report Series, no. 138, 2024. https://www.cbr.ru/ec_research/ser/wp_138/. (In Russ.)
10. Sokolov I. A., Matveev E. O. Otsenka vozdeystviya byudzhetno-nalogovoy politiki na tempy ekonomicheskogo rosta [Assessing the Impact of Fiscal Policy on Economic Growth Rates]. Mir novoy ekonomiki [The World of New Economy], 2023, no. 17(4), pp. 65-78. DOI: 10.26794/2220-6469-2023-17-4-65-78. (In Russ.)
11. Sokolov I. A., Filippova I. N. Otsenka effektivnosti byudzhetnykh raskhodov na zhilishchno-kommunal’noe khozyaystvo v regionakh Rossii [Regional Government Expenditure Efficiency Evaluation for Housing and Utilities in Russia]. Problemy prognozirovaniya [Studies on Russian Economic Development], 2022, vol. 33, no. 4, pp. 455-463. DOI: 10.1134/S1075700722040116. (In Russ.)
12. Acconcia A., Corsetti G. Simonelli S. Mafia and Public Spending: Evidence on the Fiscal Multiplier From a Quasi-Experiment. American Economic Review, 2014, vol. 104, no. 7, pp. 2185-2209. DOI: 10.1257/aer.104.7.2185.
13. Blake A., Mumtaz H. Applied Bayesian Econometrics for Central Bankers. Bank of England, Centre for Central Banking Studies, Technical Handbook, no. 4, 2012.
14. Blanchard O., Perotti R. An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output. The Quarterly Journal of Economics, 2002, no. 117, pp. 1329-1368. DOI: 10.1162/003355302320935043.
15. Chen S., Ratnovski M. L., Tsai P. H. Credit and Fiscal Multipliers in China. International Monetary Fund, 2017. DOI: 10.5089/9781484332160.001.
16. Corbi R., Papaioannou E., Surico P. Federal Transfer Multipliers. Quasi-Experimental Evidence From Brazil. NBER, Working Paper no. 20751, 2014. http://www.nber.org/papers/w20751.
17. Davis S. J., Faberman R. J., Haltiwanger J. Labor Market Flows in the Cross Section and Over Time. Journal of Monetary Economics, 2012, vol. 59, no. 1, pp. 1-18. DOI: 10.1016/j.jmoneco.2011.10.001.
18. Deleidi M., Romaniello D., Tosi F. Quantifying Fiscal Multipliers in Italy: A Panel SVAR Analysis Using Regional Data. Papers in Regional Science, 2021. DOI: 10.1111/pirs.12620.
19. Destefanis S., Di Serio M., Fragetta M. Regional Multipliers Across the Italian Regions. Journal of Regional Science, 2022, vol. 62, no. 4, pp. 1179-1205. DOI: 10.1111/jors.12592.
20. Doornik J., Hansen H. An Omnibus Test for Univariate and Multivariate Normality. Oxford Bulletin of Economics and Statistics, 2008, vol. 70(s1), pp. 927-939. DOI: 10.1111/j.1468-0084.2008.00537.x.
21. Eller M., Fidrmuc J., Fungáčová Z. Fiscal Policy and Regional Output Volatility: Evidence From Russia. Regional Studies, 2015, no. 50(11), pp. 1849-1862. DOI: 10.1080/00343404.2015.1064884.
22. Guo Q., Liu C., Ma G. How Large Is the Local Fiscal Multiplier? Evidence From Chinese Counties. Journal of Comparative Economics, 2016, vol. 44, no. 2, pp. 343-352. DOI: 10.1016/j.jce.2015.06.002.
23. Henze N., Zirkler B. A Class of Invariant Consistent Tests for Multivariate Normality. Communications in Statistics Theory and Methods, 1990, no. 19(10), pp. 3595-3617. DOI: 10.1080/03610929008830400.
24. Hlaváček M., Ismayilov I. Meta-Analysis: Fiscal Multiplier. Charles University in Prague, Institute of Economic Studies (IES), IES Working Paper, no. 7, 2022.
25. Ilzetzki E., Mendoza E. G., Végh C. A. How Big (Small?) Are Fiscal Multipliers? Journal of Monetary Economics, 2013, no. 60, pp. 239-254. DOI: 10.1016/j.jmoneco.2012.10.011.
26. Karlsson S. Forecasting With Bayesian Vector Autoregressions. Örebro University School of Business, Working Paper no. 12/2012, 2012.
27. Kilian L., Lütkepohl H. Structural Vector Autoregressive Analysis. Cambridge, Cambridge University Press, 2017.
28. Koop G., Korobilis D. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics. Foundations and Trends in Econometrics, 2010, vol. 3, no. 4, pp. 267-358. DOI: 10.1561/0800000013.
29. Lütkepohl H. New Introduction to Multiple Time Series Analysis. New York, Springer, 2005.
30. Marion J. Are Bid Preferences Benign? The Effect of Small Business Subsidies in Highway Procurement Auctions. Journal of Public Economics, 2007, no. 91(7-8), pp. 1591-1624. DOI: 10.1016/j.jpubeco.2006.12.005.
31. Nakamura E., Steinsson J. Fiscal Stimulus in a Monetary Union: Evidence From US Regions. American Economic Review, 2014, no. 104(3), pp. 753-792. DOI: 10.1257/aer.104.3.753.
32. Serrato J. C. S., Wingender P. Estimating Local Fiscal Multipliers. NBER, Working Paper no. 22425, 2016. DOI: 10.3386/w22425.
33. Stock J., Watson M. New Indexes of Coincident and Leading Economic Indicators. NBER Macroeconomics Annual, 1989, vol. 4, pp. 351-409. http://www.nber.org/chapters/c10968.
34. Zhang W. Political Incentives and Local Government Spending Multiplier: Evidence for Chinese Provinces (1978-2016). Economic Modelling, 2020, vol. 87, pp. 59-71. DOI: 10.1016/j.econmod.2019.07.006.
Review
For citations:
Sokolov I.A., Matveev E.O., Kazakova J.E. Determining the Effect of Budget Policy on the Dynamics of Russian Regional Development. Economic Policy. 2025;20(6):6-35. (In Russ.) https://doi.org/10.18288/1994-5124-2025-6-06-35




















